

Today's Discussion

What is energy?

How much energy do we have?

Will we run out?

Does energy impact the environment?

What is Energy?

ENERGY Quick Overview

Energy is a fundamental quantity in our universe

Energy

cannot be created or destroyed—
only converted

What is Energy? "the ability to do work"

Different Forms of Energy

Tides, Cars Uranium, Thorium Kinetic **Nuclear** Radiation Sunlight, Microwaves Wind, Hydraulics **Pressure** (light) Earth's Magnetic Field Lightning, Wall Outlet **Electricity** Magnetic Mountain Snowpack Biomass, Gasoline Chemical **Potential** Lava, Combustion Gases **Sensible**

We convert these forms to meet our needs

How Do We Count Energy?

QUANTITY

Mass

Length

Time

ENGLISH UNIT

Pound-Mass (lb-m)

foot (ft), mile (mi)

second (s)

METRIC UNIT

gram (g)

meter (m)

second (s)

QUANTITY

ENGLISH UNIT

METRIC UNIT

Mass

Pound-Mass (lb-m)

gram (g)

Length

foot (ft), mile (mi)

meter (m)

Time

second (s)

second (s)

Speed = Length/Time

ft/s

m/s

Acceleration = Δ Speed/Time

ft/s²

m/s²

Force = Mass * Acceleration

Pound-Weight (lbf or lb) Newton (N)

QUANTITY

Mass

Length

Time

Speed = Length/Time

Acceleration = Δ Speed/Time

Force = Mass * Acceleration

Energy = Force * Length

Power = Energy/Time

ENGLISH UNIT

Pound-Mass (lb-m)

foot (ft), mile (mi)

second (s)

ft/s

ft/s²

Pound-Weight (lbf or lb) Newton (N)

Brit. Therm. Unit (BTU) Joule (N*m)

Calories (cal)

Horsepower (hp)

METRIC UNIT

gram (g)

meter (m)

second (s)

m/s

m/s²

Watt (J/s)

QUANTITY ENGLISH UNIT METRIC UNIT

Mass Pound-Mass (lb-m) gram (g)

Length foot (ft), mile (mi) meter (m)

Time second (s) second (s)

Speed = Length/Time ft/s m/s

Acceleration = Δ Speed/Time ft/s² m/s²

Force = Mass * Acceleration Pound-Weight (lbf or lb) Newton (N)

Energy = Force * Length Brit. Therm. Unit (BTU) Joule (N*m)

Calories (cal)

Power = Energy/Time Horsepower (hp) Watt (J/s)

You need science to understand energy

Common forms of energy and how they are measured

Form	Common Name	Unit
Biomass	Food	Calories
Chemical	Heating, cooking, and industrial uses	Joules or BTUs
Electricity	Electricity (lighting, appliances, refrigeration, heating)	Kilowatt-hours (kWh)
Kinetic	Transportation (people and goods)	Gallons (gasoline), Barrels (oil)

Adding It Up

Form	Common Name	Unit
Biomass	Food (for one person)	Calories ~2,500 kcal/day
Chemical	Heating, cooking, and industrial uses (average U.S. home)	Joules or BTUs ~125,000 BTU/day
Electricity	Electricity (average U.S. home)	Kilowatt-hours (kWh) ~25 kWh/day
Kinetic	Transportation (12,000 miles/yr)	Gallons (gasoline) ~1.5 gallons/day

How Much Energy Do We Have?

Global energy resources: Power (in TW) and Energy (in ZJ) are drawn to scale

Global energy resources: Power (in TW) and Energy (in ZJ) are drawn to scale

Fusion Energy

Will We Run Out?

World Oil Is ~19 Trillion Barrels

World Has Used 1 Trillion Barrels

Total oil ~110 ZJ

Recoverable oil: 1 or 2 Trillion barrels

Including oil "left behind": ~10 Tbbls left

Show Energy Map

Does Energy Impact The Environment?

2500+ SCIENTIFIC EXPERT REVIEWERS 800+ CONTRIBUTING AUTHORS AND 450+ LEAD AUTHORS FROM 130+ COUNTRIES 6 YEARS WORK 1 REPORT

2007

The IPCC 4th Assessment Report is coming out

A picture of climate change
the current state of understanding

Most scientists now agree that global climate change is real

And that man's energy use is the main cause

Problem: burning fossil fuels

What About The Rest of the World? India and China

China:

Most populous nation (1.3 billion people)

Per-Person Energy Use is ~1/6th of U.S.

India:

Second most populous nation (1.1 billion people)

Per-Person Energy Use is ~1/16th of U.S.

What About The Rest of the World? India and China

China:

Most populous nation (1.3 billion people)

Per-Person Energy Use is ~1/6th of U.S.

India:

Second most populous nation (1.1 billion people)

Per-Person Energy Use is ~1/16th of U.S.

Hypothetical Situation: If population holds constant, and only India and China reach the same per-person energy needs as the U.S....

What About The Rest of the World? India and China

China:

Most populous nation (1.3 billion people)

Per-Person Energy Use is ~1/6th of U.S.

India:

Second most populous nation (1.1 billion people)

Per-Person Energy Use is ~1/16th of U.S.

Hypothetical Situation: If population holds constant, and only India and China reach the same per-person energy needs as the U.S....

- i) World Energy Demand will be 2.5x higher than today
- ii) We add one and a half planet's worth of emissions

China and India will influence greenhouse emissions

Is There An Energy Crisis?

What do you think?

How about you spend LESS time studying how My generation destroyed the environment and MORE time figuring out a magical solution?

The Role of Technology

What can we do?

Three options: find more fossil fuels, harness renewables, and more nuclear energy

Get More Fossil Fuels (for now)

"Oil Shale"
U.S. has 90%
1.6 trillion barrels

Methane hydrates (Twice all other fossil fuels)

Use More Renewables

Low-cost solar, more wind, geothermal and efficient biofuels

Energy from Windmills floating in the sky (sending electricity 20,000 feet down)

Fusion: a sun on the earth

Unlimited energy from water!

What did we learn?

You need science to understand energy and its different forms

We use energy in many ways, every day

Our future will depend on many technologies and resources

